Chem. 202

H.W. of chapter(6)

Student name	Student number	Section

Select the correct answer:

1.Liquid carbon disulfide burns in air, producing carbon dioxide gas and sulfur dioxide gas
$1 \mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 1 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-1075 \mathrm{~kJ}$.
What is $\Delta \mathrm{H}$ for the following equation?
$1 / 2 \mathrm{CS}_{2}(\mathrm{l})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 1 / 2 \mathrm{CO}_{2}(\mathrm{~g})+1 \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=$?
A. $\quad-537.5 \mathrm{~kJ}$
B. $\quad 5.375 \mathrm{~kJ}$
C. $\quad-2150 \mathrm{~kJ}$
D. None of the above
2.How much heat (in joules) must be used to raise the temperature of 185 g of water from $15^{0} \mathrm{C}$ to $96^{0} \mathrm{C}$?
A. 62697.2 J
B. $\quad 6.3 \mathrm{~kJ}$
C. $\quad 63 \mathrm{~kJ}$
D. None of the above
3.Calculate the standard enthalpy change for the reaction
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \overline{\mathrm{H}}_{4}(\mathrm{~g})$
based on the following standard enthalpies of formation:
$\Delta \mathrm{H}^{\circ}{ }_{f}\left[\mathrm{C}, \mathrm{H}_{2}(\mathrm{~g})\right]=+226.7 \mathrm{~kJ} / \mathrm{mol}$
and $\Delta \mathrm{H}^{\circ}{ }_{f}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right]=+52.3 \mathrm{~kJ} / \mathrm{mol}$
A. $\quad-56.4 \mathrm{~kJ}$
B. $\quad-174.4 \mathrm{~kJ}$
C. $\quad-279.0 \mathrm{~kJ}$
D. $\quad-321.1 \mathrm{~kJ}$
4.Calculate the standard enthalpy change of reaction for the process
$\mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CHCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g})$
using the following reactions:
$\mathrm{HCl}(\mathrm{g}) \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+92.3 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-74.8 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{H},(\mathrm{g})+3 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CHCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-103.1 \mathrm{~kJ}$
A. $\quad-120.6 \mathrm{~kJ}$
B. $\quad-212.9 \mathrm{~kJ}$
C. $\quad-305.2 \mathrm{~kJ}$
D. $\quad-454.8 \mathrm{~kJ}$
5. What is the value of the molar enthalpy (or heat) of combustion of ethane, a simple hydrocarbon having the formula $\mathrm{C}_{2} \mathrm{H}_{6}$, if the combustion of 3.01 grams of this gas at constant pressure releases 8.47 kilojoules of heat?
A. $\quad-0.847 \mathrm{~kJ} / \mathrm{mol}$
B. $\quad-8.47 \mathrm{~kJ} / \mathrm{mol}$
C. $\quad-84.7 \mathrm{~kJ} / \mathrm{mol}$
D. $\quad-847 \mathrm{~kJ} / \mathrm{mol}$
6.A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is
A. $\quad-24.8 \mathrm{~J}$
B. $\quad 14.8 \mathrm{~J}$
C. $\quad 55.2 \mathrm{~J}$
D. $\quad-15.2 \mathrm{~J}$
7.A gas expands in volume from 26.7 mL to 89.3 mL at constant temperature. Calculate the work done (in joules) if the gas expands against a constant pressure of 2.8 atm .
A. $\quad-18000 \mathrm{~J}$
B. $\quad-18 \mathrm{~J}$
C. $\quad 0.18 \mathrm{~J}$
D. $\quad-0.18 \mathrm{~J}$

